Convergence Rates of Wavelet Estimators in Semiparametric Regression Models Under NA Samples

Citation:

Hongchang HU,Li WU.Convergence Rates of Wavelet Estimators in Semiparametric Regression Models Under NA Samples[J].Chinese Annals of Mathematics B,2012,33(4):609~624
Page view: 1902        Net amount: 1255

Authors:

Hongchang HU; Li WU;

Foundation:

the National Natural Science Foundation of China (No. 11071022), the Key Project of the Ministry of Education of China (No. 209078) and the Youth Project of Hubei Provincial Department of Education of China (No. Q20122202).
Abstract: Consider the following heteroscedastic semiparametric regression model: $$ y_i=X^{\rm T}_i\beta+g(t_i)+\sigma_ie_i,\quad 1\leq i\leq n, $$ where $\{X_i,\,\,1\leq i\leq n\}$ are random design points, errors $\{e_i,\,\,1\leq i\leq n\}$ are negatively associated (NA) random variables, $\sigma^2_i=h(u_i)$, and $\{u_i\}$ and $\{t_i\}$ are two nonrandom sequences on $[0,1]$. Some wavelet estimators of the parametric component $\beta$, the nonparametric component $g(t)$ and the variance function $h(u)$ are given. Under some general conditions,the strong convergence rate of these wavelet estimators is $O(n^{-\frac{1}{3}}\log n)$. Hence our results are extensions of those results on independent random error settings.

Keywords:

Semiparametric regression model, Wavelet estimate, Negatively associated random error, Strong convergence rate

Classification:

62G05, 62G20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持