A Criterion of Normality Concerning Holomorphic Functions Whose Derivative Omit a Function II

Citation:

Qiaoyu CHEN,Xiaojun LIU.A Criterion of Normality Concerning Holomorphic Functions Whose Derivative Omit a Function II[J].Chinese Annals of Mathematics B,2012,33(6):815~822
Page view: 1953        Net amount: 1649

Authors:

Qiaoyu CHEN; Xiaojun LIU;

Foundation:

the National Natural Science Foundation of China (No. 11071074) and the Outstanding Youth Foundation of Shanghai (No. slg10015).
Abstract: The authors discuss the normality concerning holomorphic functions and get the following result. Let~$\mathcal {F}$~be a family of functions holomorphic on a domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity at least~$ k$, where~$ k\geq 2 $ is an integer. Let~$ h(z)\not\equiv 0$ and $\infty$ be a meromorphic function on $D$. Assume that the following two conditions hold for every~$f \in\mathcal {F}:$${\rm(a)}~ f(z) = 0 \Rightarrow |f^{(k)}(z)| < |h(z)|$.${\rm(b)}~ f^{(k)}(z) \neq h(z). $ Then $\mathcal {F} $~is normal on $D$.

Keywords:

Normal family, Meromorphic functions, Omitted function

Classification:

30D35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持