2025年5月1日 星期四

 
On the Fourth Moment of Coefficients of Symmetric Square L-Function

Citation:

Huixue LAO.On the Fourth Moment of Coefficients of Symmetric Square L-Function[J].Chinese Annals of Mathematics B,2012,33(6):877~888
Page view: 1743        Net amount: 1392

Authors:

Huixue LAO;

Foundation:

the National Natural Science Foundation of China (Nos. 10971119, 11101249) and the Shandong Provincial Natural Science Foundation of China (No. ZR2009AQ007).
Abstract: Let $f(z)$ be a holomorphic Hecke eigencuspform of weight $k$ for the full modular group. Let $\lambda_f(n)$ be the $n$th normalized Fourier coefficient of $f(z)$. Suppose that $L({\rm sym}^2f,s)$ is the symmetric square $L$-function associated with $f(z)$, and $\lambda_{{\rm sym}^2f}(n)$ denotes the $n$th coefficient $L({\rm sym}^2f,s)$. In this paper, it is proved that \sum_{n \leq x}\lambda_{{\rm sym}^2f}^4(n)=xP_2(\log x)+O(x^{\frac{79}{81}+\varepsilon}), where $P_2(t)$ is a polynomial in $t$ of degree $2$. Similarly, it is obtained that \sum_{n \leq x}\lambda_f^4(n^2)=x \wt{P}_2(\log x)+O(x^{\frac{79}{81}+\varepsilon}), where $\wt{P}_2(t)$ is a polynomial in $t$ of degree $2$.

Keywords:

Fourier coefficient of cusp form, Symmetric power L-function, Rankin-Selberg L-function

Classification:

11F30, 11F11, 11F66
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持