Increasing Powers in a Degenerate Parabolic Logistic Equation

Citation:

Jos´e Francisco RODRIGUES,Hugo TAVARES.Increasing Powers in a Degenerate Parabolic Logistic Equation[J].Chinese Annals of Mathematics B,2013,34(2):277~284
Page view: 2416        Net amount: 2402

Authors:

Jos′e Francisco RODRIGUES; Hugo TAVARES;

Foundation:

Funda\c c\~ao para a Ci\^encia e a Tecnologia (FCT) (No. PEst OE/MAT/UI0209/ 2011). The second author was also supported by an FCT grant (No. SFRH/BPD/69314/201).
Abstract: The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem $$ \partial_t u-\Delta u=a u-b(x) u^p \quad \text{ in } \Omega\times \R^+,\quad u(0)=u_0,\quad u(t)|_{\partial\Omega}=0,$$ as $p\to +\infty$, where $\Omega$ is a bounded domain, and $b(x)$ is a nonnegative function. The authors deduce that the limiting configuration solves a parabolic obstacle problem, and afterwards fully describe its long time behavior.

Keywords:

Parabolic logistic equation, Obstacle problem, Positive solution, Increasing power, Subsolution and supersolution

Classification:

35B40, 35B09, 35K91
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持