Semi-linear Wave Equations with Effective Damping

Citation:

Marcello D'ABBICCO,Sandra LUCENTE,Michael REISSIG.Semi-linear Wave Equations with Effective Damping[J].Chinese Annals of Mathematics B,2013,34(3):345~380
Page view: 3857        Net amount: 3126

Authors:

Marcello D'ABBICCO; Sandra LUCENTE; Michael REISSIG;

Foundation:

a grant of DFG (Deutsche Forschungsgemeinschaft) for the research project “Influence of time-dependent coefficients on semi-linear wave models” (No.RE 961/17-1).
Abstract: The authors study the Cauchy problem for the semi-linear damped wave equation $$ u_{tt}-\triangle u+b(t)u_t=f(u), u(0,x)=u_0(x), u_t(0,x)=u_1(x) $$ in any space dimension~$n\geq1$. It is assumed that the time-dependent damping term~$b(t)>0$ is {effective}, and in particular $tb(t)\to\infty$ as $t\to \infty$. The global existence of small energy data solutions for~$|f(u)|\approx |u|^p$ in the supercritical case of $p>1+\frac 2 n$ and $p\leq \frac n{n-2}$ for $n\ge 3$ is proved.

Keywords:

Semi-linear equations, Damped wave equations, Critical exponent,Global existence

Classification:

35L71
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持