Iterative Algorithm with Mixed Errors for Solving a New System of Generalized Nonlinear Variational-Like Inclusions and Fixed Point Problems in Banach Spaces

Citation:

Javad BALOOEE.Iterative Algorithm with Mixed Errors for Solving a New System of Generalized Nonlinear Variational-Like Inclusions and Fixed Point Problems in Banach Spaces[J].Chinese Annals of Mathematics B,2013,34(4):593~622
Page view: 1664        Net amount: 1283

Authors:

Javad BALOOEE;
Abstract: A new system of generalized nonlinear variational-like inclusions involving Amaximal m-relaxed η-accretive (so-called, (A, η)-accretive in [36]) mappings in q-uniformly smooth Banach spaces is introduced, and then, by using the resolvent operator technique associated with A-maximal m-relaxed η-accretive mappings due to Lan et al., the existence and uniqueness of a solution to the aforementioned system is established. Applying two nearly uniformly Lipschitzian mappings S1 and S2 and using the resolvent operator technique associated with A-maximal m-relaxed η-accretive mappings, we shall construct a new perturbed N-step iterative algorithm with mixed errors for finding an element of the set of the fixed points of the nearly uniformly Lipschitzian mapping Q = (S1, S2) which is the unique solution of the aforesaid system. We also prove the convergence and stability of the iterative sequence generated by the suggested perturbed iterative algorithm under some suitable conditions. The results presented in this paper extend and improve some known results in the literature.

Keywords:

A-Maximal m-relaxed η-accretive mapping, System of generalized nonlinear variational-like inclusion, Resolvent operator technique, Convergence and stability, Variational convergence

Classification:

47H05, 47H09, 47J05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持