Limit Cycles Bifurcating from a Quadratic ReversibleLotka-Volterra System with aCenter and Three Saddles?

Citation:

Kuilin WU,Haihua LIANG.Limit Cycles Bifurcating from a Quadratic ReversibleLotka-Volterra System with aCenter and Three Saddles?[J].Chinese Annals of Mathematics B,2014,35(1):25~32
Page view: 1684        Net amount: 1367

Authors:

Kuilin WU; Haihua LIANG;

Foundation:

National Natural Science Foundation of China (Nos. 11226152, 11201086),the Science and Technology Foundation of Guizhou Province (No. [2012]2167), the Foundation forDistinguished Young Talents in Higher Education of Guangdong (No. 2012LYM 0087) and the TalentProject Foundation of Guizhou University (No. 201104).
Abstract: This paper is concerned with limit cycles which bifurcate from a period annulus of a quadratic reversible Lotka-Volterra system with sextic orbits. The authors apply the property of an extended complete Chebyshev system and prove that the cyclicity of the period annulus under quadratic perturbations is equal to two.

Keywords:

Reversible Lotka-Volterra systems, Abelian integrals, Limit cycles

Classification:

34C05, 34C07
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持