Existence of Generalized Heteroclinic Solutions of theCoupled Schr¨odinger System under aSmall Perturbation

Citation:

Shengfu DENG,Boling GUO,Tingchun WANG.Existence of Generalized Heteroclinic Solutions of theCoupled Schr¨odinger System under aSmall Perturbation[J].Chinese Annals of Mathematics B,2014,35(6):857~872
Page view: 1300        Net amount: 993

Authors:

Shengfu DENG; Boling GUO; Tingchun WANG;

Foundation:

the National Natural Science Foundation of China (Nos. 11126292, 11201239, 11371314), the Guangdong Natural Science Foundation (No. S2013010015957) and the Project of Department of Education of Guangdong Province (No. 2012KJCX0074).
Abstract: The following coupled Schr\"{o}dinger system with a small perturbation \begin{align*} u_{xx}+u-u^3+\beta uv^2+\ep f(\ep,u, u_x,v,v_x) &=0\quad {\rm in} \ \mathbb{R}, \v_{xx}-v+v^3+\beta u^2v+\ep g(\ep,u, u_x,v,v_x) &=0\quad {\rm in}\mathbb{R} \end{align*} is considered, where $\beta$ and $\ep$ are small parameters. The whole system has a periodic solution with the aid of a Fourier series expansion technique, and its dominant system has a heteroclinic solution. Then adjusting some appropriate constants and applying the fixed point theorem and the perturbation method yield that this heteroclinic solution deforms to a heteroclinic solution exponentially approaching the obtained periodic solution (called the generalized heteroclinic solution thereafter).

Keywords:

Coupled Schrodinger system, Heteroclinic solutions, Reversibility

Classification:

34B60, 34C25, 34C37, 35B32, 37C29
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持