Symmetric q-Deformed KP Hierarchy

Citation:

Kelei TIAN,Jingsong HE,Yucai SU.Symmetric q-Deformed KP Hierarchy[J].Chinese Annals of Mathematics B,2015,36(1):1~10
Page view: 1745        Net amount: 1421

Authors:

Kelei TIAN; Jingsong HE; Yucai SU;

Foundation:

supported by the National Natural Science Foundation of China (Nos. 11201451, 11271210, 11371278, 11431010), the Erasmus Mundus Action 2 EXPERTS, the SMSTC grant (No. 12XD1405000) and Fundamental Research Funds for the Central Universities.
Abstract: Based on the analytic property of the symmetric q-exponent eq(x), a new symmetric q-deformed Kadomtsev-Petviashvili (q-KP for short) hierarchy associated with the symmetric q-derivative operator ?q is constructed. Furthermore, the symmetric q-CKP hierarchy and symmetric q-BKP hierarchy are defined. The authors also investigate the additional symmetries of the symmetric q-KP hierarchy.

Keywords:

q-Derivative, Symmetric q-KP hierarchy, Additional symmetries

Classification:

35Q53, 37K05, 37K10
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持