Dynamics of a Function Related to the Primes

Citation:

Ying SHI,Quanhui YANG.Dynamics of a Function Related to the Primes[J].Chinese Annals of Mathematics B,2015,36(1):81~90
Page view: 1519        Net amount: 1222

Authors:

Ying SHI; Quanhui YANG;

Foundation:

the National Natural Science Foundation of China (Nos. 11371195, 11471017), the Youth Foundation of Mathematical Tianyuan of China (No. 11126302) and the Project of Graduate Education Innovation of Jiangsu Province (No.CXZZ12-0381).
Abstract: Let $ n=p_{1}p_{2}\cdots p_{k}$, where $p_i~(1\le i\le k)$ are primes in the descending order and are not all equal. Let $\Omega_k (n)= P(p_{1}+ p_{2})P(p_{2}+ p_{3})\cdots P(p_{k-1}+p_{k})P(p_{k}+p_{1})$, where $P(n)$ is the largest prime factor of $n$. Define $w^{0}(n)=n$ and $w^{i}(n)=w(w^{i-1}(n))$ for all integers $i\ge 1$. The smallest integer $s$ for which there exists a positive integer $t$ such that $\Omega_k^{s}(n)=\Omega_k^{s+t}(n)$ is called the index of periodicity of $n$. The authors investigate the index of periodicity of $n$.

Keywords:

Dynamics, The largest prime factor, Arithmetic function

Classification:

11A41, 37B99
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持