The Cocycle Property of Stochastic Differential EquationsDriven by G-Brownian Motion

Citation:

Huijie QIAO.The Cocycle Property of Stochastic Differential EquationsDriven by G-Brownian Motion[J].Chinese Annals of Mathematics B,2015,36(1):147~160
Page view: 1551        Net amount: 1404

Authors:

Huijie QIAO;

Foundation:

the National Natural Science Foundation of China (No. 11001051).
Abstract: In this paper, solutions of the following non-Lipschitz stochastic differential equations driven by G-Brownian motion: \begin{align*} X_t=x+\int_0^tb(s,\omega,X_s)\dif s+\int_0^th(s,\omega,X_s)\dif\langle B\rangle _s +\int_0^t\sigma(s,\omega,X_s)\dif B_s \end{align*} are constructed. It is shown that they have the cocycle property. Moreover, under some special non-Lipschitz conditions, they are bi-continuous with respect to $t,\,x$.

Keywords:

Cocycle property, Non-Lipschitz condition, SDEs driven by G-Brownian motion

Classification:

60H05, 60H10, 60J65
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持