Embedding Periodic Maps on Surfaces into Those on S3

Citation:

Yu GUO,Chao WANG,Shicheng WANG,Yimu ZHANG.Embedding Periodic Maps on Surfaces into Those on S3[J].Chinese Annals of Mathematics B,2015,36(2):161~181
Page view: 3605        Net amount: 2183

Authors:

Yu GUO; Chao WANG; Shicheng WANG; Yimu ZHANG;

Foundation:

the National Natural Science Foundation of China (No. 10631060).
Abstract: Call a periodic map $h$ on the closed orientable surface $\Sigma_g$ extendable if $h$ extends to a periodic map over the pair $(S^3, \Sigma_g)$ for possible embeddings $e: \Sigma_g\to S^3$. The authors determine the extendabilities for all periodical maps on $\Sigma_2$. The results involve various orientation preserving/reversing behalves of the periodical maps on the pair $(S^3, \Sigma_g)$. To do this the authors first list all periodic maps on $\Sigma_2$, and indeed the authors exhibit each of them as a composition of primary and explicit symmetries, like rotations, reflections and antipodal maps, which itself should be interesting. A by-product is that for each even $g$, the maximum order periodic map on $\Sigma_g$ is extendable, which contrasts sharply with the situation in the orientation preserving category.

Keywords:

Symmetry of surface, Symmetry of 3-sphere, Extendable action

Classification:

57M60, 57S17, 57S25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持