Hypercube and Tetrahedron Algebra

Citation:

Bo HOU,Suogang GAO.Hypercube and Tetrahedron Algebra[J].Chinese Annals of Mathematics B,2015,36(2):293~306
Page view: 2497        Net amount: 1860

Authors:

Bo HOU; Suogang GAO;

Foundation:

the National Natural Science Foundation of China (Nos. 11471097, 11271257), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20121303110005), the Natural Science Foundation of Hebei Province (No.A2013205021) and the Key Fund Project of Hebei Normal University (No. L2012Z01).
Abstract: Let $D$ be an integer at least $3$ and let $H(D,2)$ denote the hypercube. It is known that $H(D,2)$ is a $Q$-polynomial distance-regular graph with diameter $D$, and its eigenvalue sequence and its dual eigenvalue sequence are all $\{D-2i\}_{i=0}^D$. Suppose that $\boxtimes$ denotes the tetrahedron algebra. In this paper, the authors display an action of $\boxtimes$ on the standard module $V$ of $H(D,2)$. To describe this action, the authors define six matrices in ${\rm{Mat}}_X(\mathbb{C})$, called \begin{align*} \label{eq11}A,\ A^*,\ B,\ B^*,\ K,\ K^*. \end{align*} Moreover, for each matrix above, the authors compute the transpose and then compute the transpose of each generator of $\boxtimes$ on $V$.

Keywords:

Tetrahedron algebra, Hypercube, Distance-regular graph, Onsager algebra

Classification:

05E30, 05C50, 17B65
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持