On the Serrin's Regularity Criterion for the β-Generalized Dissipative Surface Quasi-geostrophic Equation

Citation:

Jihong ZHAO,Qiao LIU.On the Serrin's Regularity Criterion for the β-Generalized Dissipative Surface Quasi-geostrophic Equation[J].Chinese Annals of Mathematics B,2015,36(6):947~956
Page view: 1189        Net amount: 953

Authors:

Jihong ZHAO; Qiao LIU

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.\,11501453, 11371294, 11326155, 11401202), the Fundamental Research Funds for the Central Universities (No.\,2014YB031), the Fundamental Research Project of Natural Science in Shaanxi Province--Young Talent Project (No.\,2015JQ1004), the Scientific Research Fund of Hunan Provincial Education Department (No.\,14B117) and the China Postdoctoral Science Foundation (No.\,2015M570053).
Abstract: The authors establish a Serrin's regularity criterion for the $\beta$-generalized dissipative surface quasi-geostrophic equation. More precisely, it is shown that if the smooth solution $\theta$ satisfies $\nabla \theta\in L^{q}(0,T; L^{p}(\mathbb{R}^{2}))$ with $\frac{\alpha}{q}+\frac{2}{p}\leq\alpha+\beta-1$, then the solution $\theta$ can be smoothly extended after time $T$. In particular, when $\alpha+\beta\geq2$, it is shown that if $\partial_{y} \theta\in L^{q}(0,T; L^{p}(\mathbb{R}^{2}))$ with $\frac{\alpha}{q}+\frac{2}{p}\leq\alpha+\beta-1$, then the solution $\theta$ can also be smoothly extended after time $T$. This result extends the regularity result of Yamazaki in 2012.

Keywords:

β-generalized quasi-geostrophic equation, Weak solution, Serrin's regularity criterion

Classification:

35B65, 35Q86, 35R11
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持