The Gradient Estimate of a Neumann Eigenfunction on a CompactManifold with Boundary

Citation:

Jingchen HU,Yiqian SHI,Bin XU.The Gradient Estimate of a Neumann Eigenfunction on a CompactManifold with Boundary[J].Chinese Annals of Mathematics B,2015,36(6):991~1000
Page view: 1166        Net amount: 1079

Authors:

Jingchen HU; Yiqian SHI;Bin XU

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.\,10971104, 11271343, 11101387), the Anhui Provincial Natural Science Foundation (No.\,1208085MA01) and the Fundamental Research Funds for the Central Universities (Nos.\,WK0010000020, WK0010000023, WK3470000003).
Abstract: Let $e_\l(x)$ be a Neumann eigenfunction with respect to the positive Laplacian $\Delta$ on a compact Riemannian manifold $M$ with boundary such that $\Delta\, e_\l=\l^2 e_\l$ in the interior of $M$ and the normal derivative of $e_\l$ vanishes on the boundary of $M$. Let $\chi_\lambda$ be the unit band spectral projection operator associated with the Neumann Laplacian and $f$ be a square integrable function on $M$. The authors show the following gradient estimate for $\chi_\lambda\,f$ as $\lambda\geq 1$: $\|\nabla \chi_\l\ f\|_\infty\leq C(\l \|\chi_\l\ f\|_\infty+\l^{-1}\|\Delta \chi_\l\ f\|_\infty)$, where $C$ is a positive constant depending only on $M$. As a corollary, the authors obtain the gradient estimate of $e_\l$: For every $\l\geq 1$, it holds that $\|\nabla e_\l\|_\infty\leq C\,\l\, \|e_\l\|_\infty$.

Keywords:

Neumann eigenfunction, Gradient estimate

Classification:

35P20, 35J05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持