Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds

Citation:

Jiaxian WU,Qihua RUAN,Yihu YANG.Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds[J].Chinese Annals of Mathematics B,2015,36(6):1011~1018
Page view: 1193        Net amount: 916

Authors:

Jiaxian WU; Qihua RUAN;Yihu YANG

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.\,11171253, 11471175), the Fujian Provincial National Natural Science Foundation of China (No.\,2012J01015) and the Startup Foundation for Introducing Talent of Nuist(No.\,2014r030) and the Pre-research Foundation of NSFC(No.\,2014x025).
Abstract: This paper deals with the gradient estimates of the Hamilton type for the positive solutions to the following nonlinear diffusion equation: \begin{align} u_t=\triangle u + \nabla\phi \cdot \nabla u + a(x)u\ln u + b(x)u \nonumber \end{align} on a complete noncompact Riemannian manifold with a Bakry-Emery {\rm Ric}ci curvature bounded below by $-K$ ($K \ge 0$), where $\phi$ is a $C^2$ function, $a(x)$ and $b(x)$ are $C^1$ functions with certain conditions.

Keywords:

Gradient estimate, Bakry-Emery Ricci curvature, Nonlinear diffusion equation

Classification:

58J35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持