Eventual Positivity of Hermitian Polynomials and Integral Operators

Citation:

Colin TAN.Eventual Positivity of Hermitian Polynomials and Integral Operators[J].Chinese Annals of Mathematics B,2016,37(1):83~94
Page view: 3479        Net amount: 1374

Authors:

Colin TAN;
Abstract: Quillen proved that if a Hermitian bihomogeneous polynomial is strictly positive on the unit sphere, then repeated multiplication of the standard sesquilinear form to this polynomial eventually results in a sum of Hermitian squares. Catlin-D'Angelo and Varolin deduced this positivstellensatz of Quillen from the eventual positive-definiteness of an associated integral operator. Their arguments involve asymptotic expansions of the Bergman kernel. The goal of this article is to give an elementary proof of the positive-definiteness of this integral operator.

Keywords:

Asymptotics, Polynomial, Positivity

Classification:

13F20, 34E05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持