Approximate Representation of Bergman Submodules

Citation:

Chong ZHAO.Approximate Representation of Bergman Submodules[J].Chinese Annals of Mathematics B,2016,37(2):221~234
Page view: 6796        Net amount: 4099

Authors:

Chong ZHAO;

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.11271075, 11371096), Shandong Province Natural Science Foundation (No.ZR2014AQ009) and the Fundamental Research Funds of Shandong University (No.2015GN017).
Abstract: In the present paper, the author shows that if a homogeneous submodule $\mathcal{M}$ of the Bergman module $L_a^2(B_d)$ satisfies $$ P_{\mathcal{M}}-\sum_iM_{z^i}P_{\mathcal{M}}M_{z^i}^*\leq\frac{c}{N+1}P_{\mathcal{M}} $$ for some number $c>0$, then there is a sequence $\{f_j\}$ of multipliers and a positive number $c'$ such that $c'P_{\mathcal{M}}\leq\sum\limits_jM_{f_j}M_{f_j}^*\leq P_{\mathcal{M}}$, i.e., $\mathcal{M}$ is approximately representable. The author also proves that approximately representable homogeneous submodules are $p$-essentially normal for $p>d$.

Keywords:

Approximate representation, Essential normality, Bergman submodule

Classification:

47A13, 46E22
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持