Small Covers over a Product Space

Citation:

D. T. Wang,Y. Y. Wang,Y. H. Ding.Small Covers over a Product Space[J].Chinese Annals of Mathematics B,2016,37(3):331~356
Page view: 1211        Net amount: 964

Authors:

D. T. Wang; Y. Y. Wang;Y. H. Ding

Foundation:

This work was supported by the National Natural Science Foundation of China (No.11371118), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20121303110004) and the Natural Science Foundation of Hebei Province (No.A2011205075).
Abstract: A small cover is a closed manifold $M^{n}$ with a locally standard $(\Bbb{Z}_{2})^{n}$-action such that its orbit space is a simple convex polytope $P^{n}$. Let $\Delta^{n}$ denote an $n$-simplex and $P(m)$ an $m$-gon. This paper gives formulas for calculating the number of D-J equivalent classes and equivariant homeomorphism classes of orientable small covers over the product space $\Delta^{n_1}\times \Delta^{n_2} \times P(m)$, where $n_1$ is odd.

Keywords:

$(\Bbb{Z}_{2})^{n}$-Action, Small cover, Equivariant homeomorphism, Polytope

Classification:

57S10, 57S25, 52B11, 52B70 \end{abstract}
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持