Canonical Metrics on Generalized Cartan-Hartogs Domains

Citation:

Y. H. Hao.Canonical Metrics on Generalized Cartan-Hartogs Domains[J].Chinese Annals of Mathematics B,2016,37(3):357~366
Page view: 1394        Net amount: 966

Authors:

Y. H. Hao;

Foundation:

This work was supported by the National Natural Science Foundation of China (No.11371257)
Abstract: In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains $\Omega(\mu,m)$. The first result is that the natural K\"ahler metric $g^{\Omega(\mu,m)}$ of $\Omega(\mu,m)$ is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the K\"ahler-Einstein metric, the Carath\'eodary metric, and the Koboyashi metric are equivalent for $\Omega(\mu,m)$.

Keywords:

Canonical metric, Extremal metric, Comparison theorem, Generalized Cartan-Hartogs domains

Classification:

32A07, 32F45, 32Q15
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持