Gröbner-Shirshov Bases of Irreducible Modules of the Quantum Group of Type G2

Citation:

G. Usta,A. Obul.Gröbner-Shirshov Bases of Irreducible Modules of the Quantum Group of Type G2[J].Chinese Annals of Mathematics B,2016,37(3):427~440
Page view: 1297        Net amount: 1040

Authors:

G. Usta; A. Obul

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.11061033, 11361056).
Abstract: First, the authors give a Gr\"{o}bner-Shirshov basis of the finite-dimensional irreducible module $V_q(\lambda)$ of the Drinfeld-Jimbo quantum group $U_q(G_2)$ by using the double free module method and the known Gr\"{o}bner-Shirshov basis of $U_q(G_2).$ Then, by specializing a suitable version of $U_q(G_2)$ at $q=1,$ they get a Gr\"{o}bner-Shirshov basis of the universal enveloping algebra $U(G_2)$ of the simple Lie algebra of type $G_2$ and the finite-dimensional irreducible $U(G_2)$-module $V(\lambda)$.

Keywords:

Quantum group, Gr\"{o}bner-Shirshov basis, Double free module, Indecomposable module, Highest weight module

Classification:

16S15, 13P10, 17B37
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持