Augmentation Quotients for Complex Representation Rings of GeneralizedQuaternion Groups

Citation:

Shan CHANG.Augmentation Quotients for Complex Representation Rings of GeneralizedQuaternion Groups[J].Chinese Annals of Mathematics B,2016,37(4):571~584
Page view: 1940        Net amount: 1320

Authors:

Shan CHANG;

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.11226066, 11401155) and Anhui Provincial Natural Science Foundation (No.1308085QA01).
Abstract: Denote by $\mathcal{Q}_m$ the generalized quaternion group of order $4m$. Let $\mathcal{R}(\mathcal{Q}_m)$ be its complex representation ring, and $\Delta(\mathcal{Q}_m)$ its augmentation ideal. In this paper, the author gives an explicit $\mathbb{Z}$-basis for the $\Delta^n(\mathcal{Q}_m)$ and determines the isomorphism class of the $n$-th augmentation quotient $\frac{\Delta^n(\mathcal{Q}_m)}{\Delta^{n+1}(\mathcal{Q}_m)}$ for each positive integer $n$.

Keywords:

Generalized quaternion groups, Representation ring, Augmentation quotients

Classification:

16S34, 20C05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持