Constructions of Metric $(n+1)$-Lie Algebras

Citation:

Ruipu BAI,Shuangshuang CHEN.Constructions of Metric $(n+1)$-Lie Algebras[J].Chinese Annals of Mathematics B,2016,37(5):729~742
Page view: 1154        Net amount: 1331

Authors:

Ruipu BAI; Shuangshuang CHEN

Foundation:

This work was supported by the National Natural Science Foundation of China (No.11371245) and the Natural Science Foundation of Hebei Province (No.A2014201006).
Abstract: Metric $n$-Lie algebras have wide applications in mathematics and mathematical physics. In this paper, the authors introduce two methods to construct metric $(n+1)$-Lie algebras from metric $n$-Lie algebras for $n\geq 2$. For a given $m$-dimensional metric $n$-Lie algebra $(\frak g, [ , \cdots, ], B_g)$, via one and two dimensional extensions $\frak L=\frak g\dot+\mathbb Fc$ and $\frak g_0$ $=\frak g\dot+ $ $\mathbb F x^{-1}\dot+ \mathbb F x^0$ of the vector space $\frak g$ and a certain linear function $f$ on $\frak g$, we construct $(m+1)$- and $(m+2)$-dimensional $(n+1)$-Lie algebras $(\frak L, [ , \cdots, ]_{cf})$ and $(\frak g_0, [ , \cdots, ]_1)$, respectively. Furthermore, if the center $Z(\frak g)$ is non-isotropic, then we obtain metric $(n+1)$-Lie algebras $(\frak L, [ , \cdots, ]_{cf}, B)$ and $(\frak g_0, [ , \cdots, ]_1, B)$ which satisfy $B|_{\frak g\times \frak g}=B_g$. Following this approach the extensions of all $(n+2)$-dimensional metric $n$-Lie algebras are discussed.

Keywords:

$n$-Lie algebra, Metric $n$-Lie algebra, Extension, Isotropic center

Classification:

17B05, 17B30
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持