Flat Solutions of Some Non-Lipschitz Autonomous Semilinear Equations May be Stable for {N}\geq 3

Citation:

Jes'us Ildefonso D'IAZ,Jes'us HERN'ANDEZ,Yavdat IL'YASOV.Flat Solutions of Some Non-Lipschitz Autonomous Semilinear Equations May be Stable for {N}\geq 3[J].Chinese Annals of Mathematics B,2017,38(1):345~378
Page view: 775        Net amount: 853

Authors:

Jes'us Ildefonso D'IAZ; Jes'us HERN'ANDEZ;Yavdat IL'YASOV

Foundation:

This work was supported by the projects of the DGISPI (Spain) (Ref. MTM2011-26119, MTM2014-57113) and the UCM Research Group MOMAT (Ref.910480).
Abstract: The authors prove that flat ground state solutions (i.e. minimizing the energy and with gradient vanishing on the boundary of the domain) of the Dirichlet problem associated to some semilinear autonomous elliptic equations with a strong absorption term given by a non-Lipschitz function are unstable for dimensions ${N}=1,2$ and they can be stable for ${N}\geq 3$ for suitable values of the involved exponents.

Keywords:

Semilinear elliptic and parabolic equation, Strong absorption,Spectral problem, Nehari manifolds, Pohozaev identity, Flatsolution, Linearized stability, Lyapunov function, Globalinstability

Classification:

35J60, 35J96, 35R35, 53C45
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持