On Hopf Galois Extension of Separable Algebras

Citation:

Yu LU,Shenglin ZHU.On Hopf Galois Extension of Separable Algebras[J].Chinese Annals of Mathematics B,2017,38(4):999~1018
Page view: 2840        Net amount: 1189

Authors:

Yu LU; Shenglin ZHU

Foundation:

This work was supported by the National Natural Science Foundation of China (No.11331006).
Abstract: In this paper, the classical Galois theory to the $H^*$-Galois case is developed. Let $H$ be a semisimple and cosemisimple Hopf algebra over a field $k$, $A$ a left $H$-module algebra, and $A/A^H$ a right $H^*$-Galois extension. The authors prove that, if $A^H$ is a separable $k$-algebra, then for any right coideal subalgebra $B$ of $H$, the $B$-invariants $A^B=\{a\in A \mid b\cdot a=\varepsilon(b)a,\ \forall b\in B\}$ is a separable $k$-algebra. They also establish a Galois connection between right coideal subalgebras of $H$ and separable subalgebras of $A$ containing $A^H$ as in the classical case. The results are applied to the case $H=(kG)^*$ for a finite group $G$ to get a Galois 1-1 correspondence.

Keywords:

Semisimple Hopf algebra, Hopf Galois extension, Separable algebra, Galois connection

Classification:

17B40, 17B50
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持