Boundedness of Solutions for Duffing Equationwith Low Regularity in Time

Citation:

Xiaoping YUAN.Boundedness of Solutions for Duffing Equationwith Low Regularity in Time[J].Chinese Annals of Mathematics B,2017,38(5):1037~1046
Page view: 2802        Net amount: 1555

Authors:

Xiaoping YUAN;

Foundation:

Project supported by the National Natural Science Foundation of China (No.11421061).
Abstract: It is shown that all solutions are bounded for Duffing equation $\ddot{x}+ x^{2n+1}+\sum\limits_{j=0}^{2n}P_{j}(t)x^{j}=0,$ provided that for each $n+1\le j\le 2n$, $P_j\in C^{\gamma}(\mathbb T^1)$ with $\gamma>1-\frac1n$ and for each $j$ with $0\le j\le n$, $P_j\in L(\mathbb T^1)$ where $\mathbb T^1=\mathbb R/\mathbb Z$.

Keywords:

Duffing equation, Boundedness of solutions, Lagrange stability, Moser twist theorem, Quasi-periodic solution

Classification:

34D20, 37J40, 70K43
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持