Möbius Homogeneous Hypersurfaces with Three Distinct Principal Curvatures in Sn+1

Citation:

Tongzhu LI.Möbius Homogeneous Hypersurfaces with Three Distinct Principal Curvatures in Sn+1[J].Chinese Annals of Mathematics B,2017,38(5):1131~1144
Page view: 2850        Net amount: 1307

Authors:

Tongzhu LI;

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.11571037, 11471021).
Abstract: Let $x:M^n\to \mathbb{S}^{n+1}$ be an immersed hypersurface in the $(n+1)$-dimensional sphere $\mathbb{S}^{n+1}$. If, for any points $p,q\in M^n$, there exists a M\"{o}bius transformation $\phi:\mathbb{S}^{n+1}\to\mathbb{S}^{n+1}$ such that $\phi\circ x(M^n)=x(M^n)$ and $\phi\circ x(p)=x(q)$, then the hypersurface is called a M\"{o}bius homogeneous hypersurface. In this paper, the M\"{o}bius homogeneous hypersurfaces with three distinct principal curvatures are classified completely up to a M\"{o}bius transformation.

Keywords:

M\"{o}bius transformation group, Conformal transformation group, M\"{o}bius homogeneous hypersurfaces, M\"{o}bius isoparametric hypersurfaces

Classification:

53A30, 53C40
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持