Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation

Citation:

Jixun CHU,Jean-Michel CORON,Peipei SHANG,Shu-Xia TANG.Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation[J].Chinese Annals of Mathematics B,2018,39(2):201~212
Page view: 1261        Net amount: 933

Authors:

Jixun CHU; Jean-Michel CORON;Peipei SHANG;Shu-Xia TANG

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.11401021, 11471044, 11771336, 11571257), the LIASFMA, the ANR project Finite4SoS (No.ANR 15-CE23-0007) and the Doctoral Program of Higher Education of China (Nos.20130006120011, 20130072120008).
Abstract: In this paper, the authors consider the Gevrey class regularity of a semigroup associated with a nonlinear Korteweg-de Vries (KdV for short) equation. By estimating the resolvent of the corresponding linear operator, the authors conclude that the semigroup generated by the linear operator is not analytic but of Gevrey class $\delta\in\big(\frac32,\infty\big)$ for $t>0$.

Keywords:

Korteweg-de Vries equation, Resolvent estimation, Analyticsemigroup, Gevrey class

Classification:

35Q53, 35P05, 47D03
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持