Existence of Nonnegative Solutions for a Class of Systems Involving Fractional (p,q)-Laplacian Operators

Citation:

Yongqiang FU,Houwang LI,Patrizia PUCCI.Existence of Nonnegative Solutions for a Class of Systems Involving Fractional (p,q)-Laplacian Operators[J].Chinese Annals of Mathematics B,2018,39(2):357~372
Page view: 1207        Net amount: 694

Authors:

Yongqiang FU; Houwang LI;Patrizia PUCCI

Foundation:

This work was supported by the National Natural Science Foundation of China (No.11771107), the Italian MIUR Project Variational Methods, with Applications to Problems in Mathematical Physics and Geometry (No.2015KB9WPT_009), the Gruppo Nazionale per l'Analisi Matematica, la Probabilit`a e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and the INdAM-GNAMPA Project 2017 titled Equazioni Differenziali non lineari (No.Prot_2017_0000265).
Abstract: The authors study the following Dirichlet problem of a system involving fractional $(p,q)$-Laplacian operators: $$\left\{\!\!\!\begin{array}{ll} \ds (-\Delta)_p^s u = \lambda a(x)|u|^{p-2}u +\lambda b(x)|u|^{\alpha-2}|v|^{\beta}u +\frac{\mu(x)}{\alpha \delta}|u|^{\gamma-2}|v|^{\delta}u & \mbox{in }\Omega,\\[3mm] \ds (-\Delta)_q^s v = \lambda c(x)|v|^{q-2}v +\lambda b(x)|u|^{\alpha}|v|^{\beta-2}v + \frac{\mu(x)}{\beta\gamma}|u|^{\gamma}|v|^{\delta-2}v & \mbox{in }\Omega,\u=v=0 & \mbox{on }\mathbb{R}^N\backslash\Omega, \end{array}\right.$$ where $\lambda>0$ is a real parameter, $\Omega$ is a bounded domain in $\mathbb{R}^N$, with boundary $\partial\Omega$ Lipschitz continuous, $s\in(0,1)$, $1

Keywords:

The Nehari manifold, Fractional $p$-Laplacian, Variational methods

Classification:

35R11, 35A15, 35J60, 47G20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持