Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras

Citation:

Changjing LI,Quanyuan CHEN,Ting WANG.Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras[J].Chinese Annals of Mathematics B,2018,39(4):633~642
Page view: 770        Net amount: 728

Authors:

Changjing LI; Quanyuan CHEN;Ting WANG

Foundation:

The work was supported by the National Natural Science Foundation of China (No.11526123, No.11401273) and the Natural Science Foundation of Shandong Province of China (No.ZR2015PA010).
Abstract: Let $\mathcal {A}$ and $\mathcal {B}$ be two factor von Neumann algebras. For $A, B\in\mathcal {A},$ define by $[A, B]_{*}=AB-BA^{\ast}$ the skew Lie product of $A$ and $B.$ In this article, it is proved that a bijective map $\Phi: \mathcal {A}\rightarrow \mathcal {B}$ satisfies $\Phi([[A,B]_{*},C]_{*})=[[\Phi(A),\Phi(B)]_{*},\Phi(C)]_{*}$ for all $A, B,C\in\mathcal {A}$ if and only if $\Phi$ is a linear $*$-isomorphism, or a conjugate linear $*$-isomorphism, or the negative of a linear $*$-isomorphism, or the negative of a conjugate linear $*$-isomorphism.

Keywords:

Jordan triple $*$-product, Isomorphism, von Neumannalgebras

Classification:

47B48, 46L10
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持