A Schwarz Lemma at the Boundary of Hilbert Balls

Citation:

Zhihua CHEN,Yang LIU,Yifei PAN.A Schwarz Lemma at the Boundary of Hilbert Balls[J].Chinese Annals of Mathematics B,2018,39(4):695~704
Page view: 884        Net amount: 645

Authors:

Zhihua CHEN; Yang LIU;Yifei PAN

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.11671361, 11571256) and the Zhejiang Provincial Natural Science Foundation of China (No.LY14A010008).
Abstract: In this paper, the authors prove a general Schwarz lemma at the boundary for the holomorphic mapping $f$ between unit balls $\mathbb B$ and $\mathbb B'$ in separable complex Hilbert spaces $\mathcal H$ and $\mathcal H'$, respectively. It is found that if the mapping $f\in C^{1+\alpha}$ at $z_0\in \partial \mathbb B$ with $f(z_0)=w_0\in \partial \mathbb B'$, then the Fr\'echet derivative operator ${\rm D}f(z_0)$ maps the tangent space $T_{z_0}(\partial \mathbb B^n)$ to $T_{w_0}(\partial \mathbb B')$, the holomorphic tangent space $T^{(1,0)}_{z_0}(\partial \mathbb B^n)$ to $T^{(1,0)}_{w_0}(\partial \mathbb B')$, respectively.

Keywords:

Boundary Schwarz lemma, Separable Hilbert space, Holomorphic mapping, Unit ball

Classification:

32H02, 46E20, 30C80
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持