2025年5月12日 星期一

 
Problems of Lifts in Symplectic Geometry

Citation:

Arif SALIMOV,Manouchehr BEHBOUDI ASL,Sevil KAZIMOVA.Problems of Lifts in Symplectic Geometry[J].Chinese Annals of Mathematics B,2019,40(3):321~330
Page view: 1021        Net amount: 635

Authors:

Arif SALIMOV; Manouchehr BEHBOUDI ASL;Sevil KAZIMOVA
Abstract: Let $(M,\omega )$ be a symplectic manifold. In this paper, the authors consider the notions of musical (bemolle and diesis) isomorphisms $\omega ^{b}:TM\rightarrow T^{\ast }M$ and $\omega ^{\sharp }:T^{\ast }M\rightarrow TM$ between tangent and cotangent bundles. The authors prove that the complete lifts of symplectic vector f\/ield to tangent and cotangent bundles is $\omega ^{b}$-related. As consequence of analyze of connections between the complete lift $^{c}\omega _{TM}$ of symplectic $2$-form $\omega $ to tangent bundle and the natural symplectic $2$-form $\rmd p$ on cotangent bundle, the authors proved that $\rmd p$ is a pullback of $^{c}\omega _{TM}$ by $\omega ^{\sharp }$. Also, the authors investigate the complete lift $^{c}\varphi _{T^{\ast }M}$ of almost complex structure $\varphi $ to cotangent bundle and prove that it is a transform by $\omega ^{\sharp }$ of complete lift $^{c}\varphi _{TM}$ to tangent bundle if the triple $(M,\omega ,\varphi )$ is an almost holomorphic $\mathfrak{A}$-manifold. The transform of complete lifts of vector-valued $2$-form is also studied.

Keywords:

Symplectic manifold, Tangent bundle, Cotangent bundle, Transform oftensor f/ields, Pullback, Pure tensor, Holomorphic manifold

Classification:

53D05, 53C12, 55R10
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持