Convergence of Solutions of General Dispersive Equations Along Curve

Citation:

Yong DING,Yaoming NIU.Convergence of Solutions of General Dispersive Equations Along Curve[J].Chinese Annals of Mathematics B,2019,40(3):363~388
Page view: 836        Net amount: 715

Authors:

Yong DING; Yaoming NIU

Foundation:

This work was supported by the National Natural Science Foundation of China (Nos.11571160, 11661061, 11761054) and the Inner Mongolia University Scientific Research Projects (Nos. NJZZ16234, NJZY17289).
Abstract: In this paper, the authors give the local $L^{2}$ estimate of the maximal operator $S^\ast_{\phi,\gamma}$ of the operator family $\{S_{t,\phi,\gamma}\}$ defined initially by $$ S_{t,\phi,\gamma}f(x):=\rme^{\rmi t\phi(\sqrt{-\Delta})} f(\gamma(x,t))=(2\pi)^{-1} \int_{\mathbb{R}} \rme^{\rmi \gamma(x,t)\cdot\xi+\rmi t\phi(|\xi|)}\wh{f}(\xi)\rmd\xi,\quad f\in\mathcal{S}(\mathbb{R}), $$ which is the solution (when $n=1$) of the following dispersive equations ($\ast$) along a curve $\gamma$: $$ \bigg\{\!\!\!\begin{array}{ll} \rmi\partial_{t}u+\phi(\sqrt{-\Delta})u=0, & (x,t)\in \mathbb{R}^n\times \mathbb{R},\u(x,0)=f(x), & f\in \mathcal{S}(\mathbb{R}^{n}), \end{array}\eqno(\ast) $$ where $\phi: \mathbb{R}^{+}\rightarrow\mathbb{R}$ satisfies some suitable conditions and $\phi(\sqrt{-\Delta})$ is a pseudo-dif\/ferential operator with symbol $\phi(|\xi|)$. As a consequence of the above result, the authors give the pointwise convergence of the solution (when $n=1$) of the equation ($\ast$) along curve $\gamma$. Moreover, a global $L^{2}$ estimate of the maximal operator $S^\ast_{\phi,\gamma}$ is also given in this paper.

Keywords:

$L^{2}$ estimate, Global maximal operator, Dispersive equation, Curve

Classification:

42B20, 42B25, 35S10
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持