|
| |
Sobolev Spaces on Quasi-K\"ahler Complex Varieties |
| |
Citation: |
Haisheng LIU.Sobolev Spaces on Quasi-K\"ahler Complex Varieties[J].Chinese Annals of Mathematics B,2019,40(4):599~612 |
Page view: 1736
Net amount: 1565 |
Authors: |
Haisheng LIU; |
|
|
Abstract: |
If $V$ is an irreducible quasi-K\"ahler complex variety and $E$ is a
vector bundle over $\mathrm{reg}(V)$, the author proves that
$W^{1,2}_{0}(\mathrm{reg}(V),E)=W^{1,2}(\mathrm{reg}(V),E)$, and
that for $\dim_{\mathbb{C}}\mathrm{reg}(V)>1$, the natural inclusion
$W^{1,2}(\mathrm{reg}(V),E)\hookrightarrow L^{2}(\mathrm{reg}(V),E)$
is compact, the natural inclusion
$W^{1,2}(\mathrm{reg}(V),E)\hookrightarrow
L^{\frac{2v}{v-1}}(\mathrm{reg}(V),E)$ is continuous. |
Keywords: |
Quasi-K"ahler variety, Sobolev spaces |
Classification: |
46E35, 32W05, 32Q99 |
|
Download PDF Full-Text
|
|
|
|