|
| |
Schwarz Lemma at the Boundary on the Classical Domain of Type III |
| |
Citation: |
Taishun LIU,Xiaomin TANG,Wenjun ZHANG.Schwarz Lemma at the Boundary on the Classical Domain of Type III[J].Chinese Annals of Mathematics B,2020,41(3):335~360 |
Page view: 842
Net amount: 662 |
Authors: |
Taishun LIU; Xiaomin TANG;Wenjun ZHANG |
Foundation: |
This work was supported by the National Natural Science
Foundation of China (Nos.11571105, 11771139). |
|
|
Abstract: |
Let
$\mathcal{R_\mathcal{\uppercase\expandafter{\romannumeral3}}}(n)$ be
the classical domain of type
$\mathcal{\uppercase\expandafter{\romannumeral3}}$ with $n\geq 2$.
This article is devoted to a deep study of the Schwarz lemma on
$\mathcal{R_\mathcal{\uppercase\expandafter{\romannumeral3}}}(n)$
via not only exploring the smooth boundary points of
$\mathcal{R_\mathcal{\uppercase\expandafter{\romannumeral3}}}(n)$
but also proving the Schwarz lemma at the smooth boundary point for
holomorphic self-mappings of
$\mathcal{R_\mathcal{\uppercase\expandafter{\romannumeral3}}}(n)$. |
Keywords: |
Holomorphic mapping, Schwarz lemma at the boundary, The classicaldomain of type $mathcal{uppercaseexpandafter{romannumeral3}}$ |
Classification: |
32H02, 32H99, 30C80 |
|
Download PDF Full-Text
|