Eigenvalues of Second-Order Left-Definite Linear Difference Operatorwith Spectral Parameters in Boundary Conditions

Citation:

Chenghua GAO,Jingjing WANG,Xiaobin YAO,Xueqin CAO.Eigenvalues of Second-Order Left-Definite Linear Difference Operatorwith Spectral Parameters in Boundary Conditions[J].Chinese Annals of Mathematics B,2024,45(6):905~926
Page view: 439        Net amount: 159

Authors:

Chenghua GAO; Jingjing WANG;Xiaobin YAO;Xueqin CAO

Foundation:

the National Natural Science Foundation of China (Nos. 12461039, 12161071), the Doctoral Research Fund Project of Lanzhou City University (No. LZCU-BS2023-24), the Youth Fund Project of Lanzhou City University (No. LZCU-QN2023-09), Gansu Youth Science and Technology Fund Project (No. 24JRRA536) and the Discipline Construction Project of Lanzhou City University
Abstract: In this paper, the authors consider the spectra of second-order left-definite difference operator with linear spectral parameters in two boundary conditions. First, they obtain the exact number of this kind of eigenvalue problem, and prove these eigenvalues are all real and simple. In details, they get that the number of the positive (negative) eigenvalues is related to not only the number of positive (negative) elements in the weight function, but also the parameters in the boundary conditions. Second, they obtain the interlacing properties of these eigenvalues and the sign-changing properties of the corresponding eigenfunctions according to the relations of the parameters in the boundary conditions.

Keywords:

Left-definite difference operator, Boundary conditions with spectral parameters, Interlacing properties, Oscillation properties

Classification:

39A06, 39A12, 39A21, 39A70
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持