|
| |
Lagrange Stability and KAM Tori for Duffing Equations with Quasi-periodic Coefficients |
| |
Citation: |
Huining XUE,Xiaoping YUAN.Lagrange Stability and KAM Tori for Duffing Equations with Quasi-periodic Coefficients[J].Chinese Annals of Mathematics B,2025,46(3):359~372 |
Page view: 105
Net amount: 47 |
Authors: |
Huining XUE; Xiaoping YUAN |
Foundation: |
the National Natural Science Foundation of China (Nos. 12071254,12371189) |
|
|
Abstract: |
It is proved that there are many (positive Lebesgue measure)
Kolmogorov-Arnold-Moser (KAM for short) tori at infinity
and thus all solutions are bounded for the Duffing equations
$\ddot{x}+x^{2n+1}+\sum\limits_{j=0}^{2n}p_i(t) {x^{j}} =0$ with
$p_j(t)$'s being time-quasi-periodic smooth functions. |
Keywords: |
KAM tori Lagrangian stability Duffing equation Quasi-periodic function |
Classification: |
37J40, 34C11 |
|
Download PDF Full-Text
|