A Note on the Convergence Along Tangential Curve Associated with Fractional Schr¨odinger Propagator and Boussinesq Operator

Citation:

Dan LI,Junfeng LI.A Note on the Convergence Along Tangential Curve Associated with Fractional Schr¨odinger Propagator and Boussinesq Operator[J].Chinese Annals of Mathematics B,2025,46(4):611~632
Page view: 18        Net amount: 10

Authors:

Dan LI; Junfeng LI

Foundation:

the National Natural Science Foundation of China (No. 12071052) and the Research Foundation for Youth Scholars of Beijing Technology and Business University (No. QNJJ2021- 02).
Abstract:

Abstract In this paper, the authors study the almost everywhere pointwise convergence problem along a class of restricted curves in \(\mathbb{R} \times \mathbb{R}\) given by \(\{(y,t) : y \in \Gamma(x,t)\}\) for each \(t \in [0,1]\), where \(\Gamma(x,t) = \{\gamma(x,t,\theta) : \theta \in \Theta\}\) for a given compact set \(\Theta\) in \(\mathbb{R}\) of the fractional Schr?dinger propagator and Boussinesq operator. They focus on the relationship between the upper Minkowski dimension of \(\Theta\) and the optimal \(s\) for which

\[ \lim_{\substack{y \in \Gamma(x,t) \\ (y,t) \to (x,0)}} \mathrm{e}^{\mathrm{i}t (-\Delta)^{\alpha}} f(y) = f(x), \quad \lim_{\substack{y \in \Gamma(x,t) \\ (y,t) \to (x,0)}} \mathcal{B}_t f(y) = f(x), \quad \text{a.e.,} \] whenever \(f \in H^s(\mathbb{R})\).


Keywords:

Fractional Schr¨odinger propagator  Boussinesq operator  Pointwise convergence  Tangential curves  Sobolev space

Classification:

Fractional Schr¨odinger propagator, Boussinesq operator, Pointwise convergence, Tangential curves, Sobolev space
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持