ON A THEOREM CONCERNING CARLESON MEASURE AND ITS APPLICATIONS

Citation:

Han Yongsheng.ON A THEOREM CONCERNING CARLESON MEASURE AND ITS APPLICATIONS[J].Chinese Annals of Mathematics B,1983,4(1):15~20
Page view: 707        Net amount: 739

Authors:

Han Yongsheng;
Abstract: A measure $\[\mu \]$ is called Carleson measure, iff the condition of Carleson type $\[\mu ({Q^*}) \le C{\left| Q \right|^\alpha }(\alpha \ge 1)\]$ is satisfied, where C is a constant independent of the cube Q with edge length $\[q > 0\]$ in $\[{R^n}\]$ and $\[{Q^*} = \{ (y,t) \in R_ + ^{n + 1}|y \in Q,0 < t < q\} \]$. In this paper the following theorem is established:"Suppose that $\[\mu \]$ is a Carleson measure,$\[\phi (y,t)\]$ is continuous in $\[R_ + ^{n + 1}\]$ and $\[{\phi ^*}(x) = \mathop {\sup }\limits_{\left| {y - x} \right| < t,(y,t) \in R_ + ^{n + 1}} \left| {\phi (y,t)} \right|\]$. Then the following inequalities hold: (1)$\[\mu (\{ \left| {\phi (y,t)} \right| > s\} ) \le C{\left| {\{ {\phi ^*}(x) > s\} } \right|^\alpha }(\forall s > 0)\]$, (2)$\[\int_{R_ + ^{n + 1}} {{{\left| {\phi (y,t)} \right|}^\alpha }} \alpha \mu \le C{\left[ {\int_{{R^n}} {{\phi ^*}(x)dx} } \right]^\alpha }\]$, (3)$\[\int_{{Q^n}} {{{\left| {\phi (y,t)} \right|}^\alpha }} d\mu \le C{\left[ {\int_{3Q} {{\phi ^*}(x)dx} } \right]^\alpha }\]$ where 3Q denotes the cube with the same center as Q but of edge length 3q, In virtue of this theorem, the proof of three propositions in the paper of C. Feffer-man and E. M. Stein (Acta Math., 1972) is simplified.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持