DECOMPOSITION OF BMO FUNCTIONS AND FACTORIZATION OF $\[{A_p}\]$ WEIGHTS IN MARTINGALE SETTING

Citation:

Long Ruilin,Peng Lizhong.DECOMPOSITION OF BMO FUNCTIONS AND FACTORIZATION OF $\[{A_p}\]$ WEIGHTS IN MARTINGALE SETTING[J].Chinese Annals of Mathematics B,1983,4(1):117~128
Page view: 778        Net amount: 710

Authors:

Long Ruilin; Peng Lizhong
Abstract: Let $\[(\Omega ,F,\mu )\]$ be a probabilty space with an increasing family $\[{\{ {F_t}\} _{t > 0}}\]$ of sub-fields satisfying the usual conditions. The following results are obtained: for $\[f \in BMO\]$, we have $\[f = g - h\]$ with $\[g,h \in BLO\]$; if in addition, f satisfies then for $\[s > 0\]$ arbitrary, g,h can be chosen such that $\[g,h \in BLO\]$, and $$\[E({\varepsilon ^{(a - \varepsilon )(g - {g_t})}}|{F_t}) \le {C_{a,\beta ,\varepsilon }},E({\varepsilon ^{(\beta - \varepsilon )(h - {h_t})}}|{F_t}) \le {C_{a,\beta ,\varepsilon }}\]$$ and for weights z, we have $\[z \in {A_p} \cap S \Leftrightarrow z = {z_1}z_2^{1 - p}\]$ with $\[{z_i} \in {A_i} \cap S,i = 1,2\]$, where $\[S = \{ \begin{array}{*{20}{c}} {weight}&{z:C{z_{{T^ - }}} \le {z_T} \le C{z_{{T^ - }}}} \end{array}\} \]$, $\[\forall \]$ stopping times T, outside a null set }.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持