NONLINEAR BOUNDARY PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS

Citation:

Zheng Songmu.NONLINEAR BOUNDARY PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS[J].Chinese Annals of Mathematics B,1983,4(2):177~186
Page view: 693        Net amount: 678

Authors:

Zheng Songmu;
Abstract: By means of the supersolutioh and subsolution method and monotone iteration technique, the following nonlinear elliptic boundary problem with the nonlocal boundary conditions $$\[\left\{ {\begin{array}{*{20}{c}} {Lu = - \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ij}}(x)\frac{{\partial u}}{{\partial {x_j}}}) = f(x,u)} }\{u{|_\Gamma } = const(unknown), - \int { - \sum\limits_{i,j = 1}^n {{a_{ij}}(x)\frac{{\partial u}}{{\partial {x_j}}}\cos (n,{x_i})ds = 0} } } \end{array}} \right.\]$$ is considerd. The sufficient conditions which ensure at least one solution are given. Furthermore, the estimate of the first nonzero eigenvalue for the following linear eigenproblem $$\[\left\{ {\begin{array}{*{20}{c}} {L\varphi = \lambda \varphi }\{\varphi {|_\Gamma } = const(unknown), - \int {\sum\limits_{i,j = 1}^n {{a_{ij}}(x)\frac{{\partial u}}{{\partial {x_j}}}\cos (n,{x_i})ds} = 0} } \end{array}} \right.\]$$ is obtained, that is $$\[{\lambda _1} \ge \frac{{2\alpha }}{{n{d^2}}}\]$$

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持