ON ONE CONJECTURE OF R. S. SINGH

Citation:

Chen Xiru.ON ONE CONJECTURE OF R. S. SINGH[J].Chinese Annals of Mathematics B,1983,4(2):193~198
Page view: 750        Net amount: 671

Authors:

Chen Xiru;
Abstract: In 1979 R. S. Singh (Ann, Statist, 1979, p. 890) made a conjecture concerning the convergence rate of EB estimates of the parameter $\[\theta \]$ in an one-dimensional continuous exponential distribution family, under the square loss function, the prior distribution family being confined to a bounded interval. The conjecture asserts that the rate cannot reach $\[o({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 n}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$n$}})\]$ or even $\[O({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 n}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$n$}})\]$. In this article, the weaker part of this conjecture (i, e. the $\[o({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 n}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$n$}})\]$ part) is shown to be correct.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持