2025年4月28日 星期一

 
ON THE RELATIVE POSITION OF LIMITCYCLES FOR THE EQUATIONOF TYPE $\[{(II)_{l = 0}}\]$

Citation:

Liang Zhaojun.ON THE RELATIVE POSITION OF LIMITCYCLES FOR THE EQUATIONOF TYPE $\[{(II)_{l = 0}}\]$[J].Chinese Annals of Mathematics B,1984,5(1):37~42
Page view: 730        Net amount: 914

Authors:

Liang Zhaojun;
Abstract: In this paper, we consider the relative position of limit cycles for the system $$\[\begin{array}{*{20}{c}} {\frac{{dx}}{{dt}} = \delta x - y + mxy - {y^2}}\{\frac{{dy}}{{dt}} = x + a{x^2}} \end{array}\]$$ under the condition $$\[a < 0,0 < \delta \le m,m \le \frac{1}{a} - a\]$$ The main result is as follows: (i)Under Condition (2), if $\[\delta = \frac{m}{2} + \frac{{{m^2}}}{{4a}} \equiv {\delta _0}\]$, then system $\[{(1)_{{\delta _0}}}\] $ has no limit cycles and on singular closed trajectory through a saddle point in the whole plane, (ii)Under condition (2), the foci 0 and R' cannot be surrounded by the limit cycles of system (1) simultaneously.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持