ON DIRICHLET PROBLEMS FOR SECOND ORDER QUASILINEAR DEGENERATE ELLIPTIC EQUATIONS

Citation:

Yue Jiangliang.ON DIRICHLET PROBLEMS FOR SECOND ORDER QUASILINEAR DEGENERATE ELLIPTIC EQUATIONS[J].Chinese Annals of Mathematics B,1984,5(1):43~58
Page view: 780        Net amount: 941

Authors:

Yue Jiangliang;
Abstract: The purpose of this paper is to study the existence of the classical solutions of some Dirichlet problems for quasilinear elliptic equations $$\[{a_{11}}(x,y,u)\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2{a_{12}}(x,y,u)\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {a_{22}}(x,y,u)\frac{{{\partial ^2}u}}{{\partial {y^2}}} + f(x,y,u,\frac{{\partial u}}{{\partial x}},\frac{{\partial u}}{{\partial y}}) = 0\]$$ Where $\[{a_{ij}}(x,y,u)(i,j = 1,2)\]$ satisfy $$\[\lambda (x,y,u){\left| \xi \right|^2} \le \sum\limits_{i,j = 1}^2 {{a_{ij}}(x,y,u)} {\xi _i}{\xi _j} \le \Lambda (x,y,u){\left| \xi \right|^2}\]$$ for all $\[\xi \in {R^2}\]$ and $\[(x,y,u) \in \bar \Omega \times [0, + \infty ),i.e.\lambda (x,y,u),\Lambda (x,y,u)\]$ denote the minimum and maximum eigenvalues of the matrix $\[[{a_{ij}}(x,y,u)]\]$ respectively, moreover $$\[\lambda (x,y,0) = 0,\Lambda (x,u,0) = 0;\Lambda (x,y,u) \ge \lambda (x,y,u) > 0,(u > 0).\]$$ Some existence theorems under tire “ natural conditions imposed on $\[f(x,y,u,p,q)\]$ are obtained.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持