ON THE ALGEBRAIC INDEPENDENCE OF CERTAIN POWER SERIES OF ALGEBRAIC NUMBERS

Citation:

Zhu Yaochen.ON THE ALGEBRAIC INDEPENDENCE OF CERTAIN POWER SERIES OF ALGEBRAIC NUMBERS[J].Chinese Annals of Mathematics B,1984,5(1):109~118
Page view: 776        Net amount: 687

Authors:

Zhu Yaochen;
Abstract: Let $$\[{f_v}(s) = \sum\limits_{k = 1}^\infty {{a_{v,k}}{z^{{\lambda _{v,k}}}}} \begin{array}{*{20}{c}} {(v = 1, \cdots ,s)}&{} \end{array}\]$$ be s power series with algebraic coeffcients $\[{{a_{v,k}}}\]$ convergence radio $\[{R_v} > 0\]$ and sufficiently rapidly increasing integers $\[{{\lambda _{v,k}}}\]$. It is shown that under certain conditions depending only on $\[{{a_{v,k}}}\]$ and $\[{{\lambda _{v,k}}}\]$ $\[(i){f_1}({\theta _1}), \cdots ,{f_s}({\theta _s})\]$are algebraically independent for arbitrary algebraic numbers $\[{\theta _1} \cdots ,{\theta _s}\]$ with $\[0 < \left| {{\theta _v}} \right| < {R_v}(v = 1, \cdots ,v)\]$; $\[(ii){f_v}({\theta _\mu })(v = 1, \cdots ,s;\mu = 1, \cdots ,t)\]$ are algebraically independent for t difierent algebraic numbers $\[{\theta _1}, \cdots ,{\theta _t}\]$ with $\[0 < \left| {{\theta _t}} \right| < \left| {{\theta _{t - 1}}} \right| < \cdots < \left| {{\theta _1}} \right| < \mathop {\min }\limits_{1 \le v \le s} R\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持