ON THE EXISTENCE OF PERIODIC SOLUTIONS OF NONLINEAR OSCILLATION EQUATION

Citation:

Huang Qichang.ON THE EXISTENCE OF PERIODIC SOLUTIONS OF NONLINEAR OSCILLATION EQUATION[J].Chinese Annals of Mathematics B,1984,5(3):311~318
Page view: 698        Net amount: 725

Authors:

Huang Qichang;
Abstract: This paper deal with the existence of periodic solutions of the nonlinear cscillation equation $$\[\mathop x\limits^{ \cdot \cdot } + f(x)\varphi (x) + \psi (x)\eta (x) = 0\begin{array}{*{20}{c}} {}&{(3)} \end{array}\]$$ The author offers a method which can reduce (3) into system $$\[\mathop x\limits^ \cdot = h(y) - e(y)F(x),\mathop y\limits^ \cdot = - g(x)\begin{array}{*{20}{c}} {}&{(9)} \end{array}\]$$ Some sufficient condition for the existence of the limit cycles of (9) are obtained. These results generalize the results in [1,2,3,4,5,6].

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持