INITIAL VALUE PROBLEMS FOR NONLINEAR DEGENERATE SYSTEMS OF FILTRATION TYPE

Citation:

Zhou Yulin.INITIAL VALUE PROBLEMS FOR NONLINEAR DEGENERATE SYSTEMS OF FILTRATION TYPE[J].Chinese Annals of Mathematics B,1984,5(4):633~652
Page view: 651        Net amount: 731

Authors:

Zhou Yulin;
Abstract: In this paper, the periodic boundary problem and the initial value problem for the nonlinear system of parabolic type $\[{u_t} = (grad\varphi (u))\]$ are studied, where $\[u = ({u_1}, \cdots ,{u_N})\]$ is an N-dimensional vector valued function, $\[\varphi (u)\]$ is a strict convex function of vector variable $\[u\]$, and its matrix of derivatives of second order is zero-definite at $\[u = 0\]$. This system is degenerate. The definition of the generalized solution of the problem: $\[u(x,t) \in {L_\infty }((0,T);{L_2}(R)),\]$, grad $\[\varphi (u) \in {L_\infty }((0,T);W_2^{(1)}(R)),\]$ and it satisfies appropriate integral relation. The existence and uniqueness of the generalized solution of the problem are proved. When N=1, the system is the commonly so-called degenerate partial differential equation of filtration type.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持