HOLDER ESTIMATES FOR SOLUTIONS OF UNIFORMLY DEGENERATE QUASILINEAR PARABOLIC EQUATIONS

Citation:

Chen Yazhe.HOLDER ESTIMATES FOR SOLUTIONS OF UNIFORMLY DEGENERATE QUASILINEAR PARABOLIC EQUATIONS[J].Chinese Annals of Mathematics B,1984,5(4):661~678
Page view: 741        Net amount: 736

Authors:

Chen Yazhe;
Abstract: In this paper the author discusses the quasilinear parabolic equation $$\[\frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial {x_i}}}[{a_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}] + {b_i}(x,t,u)\frac{{\partial u}}{{\partial {x_i}}} + c(x,t,u)\]$$ Which is uniformly degenerate at $\[u = 0\]$. Let $\[u(x,t)\]$ be a classical solution of the equation satisfying $\[0 < u(x,t) \le M\]$. Under some assumptions the author establishes the interior estimations of Holder coefficient of the solution for the equation and the global estimations for Cauchy problems and the first boundary value problems, where Holder ooeffioients and exponents are independent of the lower positive bound of $\[u(x,t)\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持