UNBOUNDED SOLUTIONS OF CONSERVATIVE OSCILLATORS UNDER ROUGHLY PERIODIC PERTURBATIONS

Citation:

Ding Tongren.UNBOUNDED SOLUTIONS OF CONSERVATIVE OSCILLATORS UNDER ROUGHLY PERIODIC PERTURBATIONS[J].Chinese Annals of Mathematics B,1984,5(4):687~694
Page view: 797        Net amount: 794

Authors:

Ding Tongren;
Abstract: This note is concerned with the equation $$\[\frac{{{d^2}x}}{{d{t^2}}} + g(x) = p(t)\begin{array}{*{20}{c}} {}&{(1)} \end{array}\]$$ where g(x) is a continuously differentiable function of a $\[x \in R\]$, $\[xg(x) > 0\]$ whenever $\[x \ne 0\]$, and $\[g(x)/x\]$ tends to $\[\infty \]$ as \[\left| x \right| \to \infty \]. Let p(t) be a bounded function of $\[t \in R\]$. Define its norm by $\[\left\| p \right\| = {\sup _{t \in R}}\left| {p(t)} \right|\]$ The study of this note leads to the following conclusion which improves a result due to J. E. Littlewood, For any given small constants $\[\alpha > 0,s > 0\]$, there is a continuous and roughly periodic(with respect to $\[\Omega (\alpha )\]$) function p(t) with $\[\left\| p \right\| < s\]$ such that the corresponding equation (1) has at least one unbounded solution.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持