THE AUTOMORPHISMS OF NON—DEFECTIVEORTHOGONAL GROUPS $\[{\Omega _S}(V)\]$ AND $\[O_s^'\]$IN CHARACTERISTIC 2

Citation:

Li Fuan.THE AUTOMORPHISMS OF NON—DEFECTIVEORTHOGONAL GROUPS $\[{\Omega _S}(V)\]$ AND $\[O_s^'\]$IN CHARACTERISTIC 2[J].Chinese Annals of Mathematics B,1986,7(1):1~13
Page view: 977        Net amount: 893

Authors:

Li Fuan;

Foundation:

Institute of Mathematics, Academia Sinica, Beijing, China.
Abstract: Let $V$ be a non-defective S-dimensional quadratic space over a field $F$ of characteristic 2, $\[F \ne {F_2}\]$. We prove that if there is an exceptional automorphism of either $\[{\Omega _S}(V)\]$ or $\[O_S^'(V)\]$ then $\[{V^\alpha }\]$ has a Cayley algebra structure for some $\[\alpha \]$ in F. Moreover, every exceptional automorphism of $\[O_S^'(V)\]$ has exactly one of the following forms: $$\[{\varphi _1} \circ {\Phi _g}or{\varphi _2} \circ {\Phi _g}\]$$ where $\[{\Phi _g}\]$ is an automorphism of $\[O_S^'(V)\]$ given by conjugation by a semilinear automorphism of V which preserves the quadratic structure, and $\[{\varphi _1}\]$ and $\[{\varphi _2}\]$ are the automorphisms induced by triality principle. Every exceptional automorphism of $\[{\Omega _S}(V)\]$ is the restriction of a unique exceptional automorpliism of $\[O_S^'(V)\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持